Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564889

RESUMO

Surface-enhanced Raman spectroscopy (SERS) nanotags have garnered much attention as promising bioimaging contrast agent with ultrahigh sensitivity, but their clinical translation faces challenges including biological and laser safety. As breast sentinel lymph node (SLN) imaging agents, SERS nanotags used by local injection and only accumulation in SLNs, which were removed during surgery, greatly reduce biological safety concerns. But their clinical translation lacks pilot demonstration on large animals close to humans. The laser safety requires irradiance below the maximum permissible exposure threshold, which is currently not achievable in most SERS applications. Here we report the invention of the core-shell SERS nanotags with ultrahigh brightness (1 pM limit of detection) at the second near-infrared (NIR-II) window for SLN identification on pre-clinical animal models including rabbits and non-human primate. We for the first time realize the intraoperative SERS-guided SLN navigation under a clinically safe laser (1.73 J/cm2) and identify multiple axillary SLNs on a non-human primate. No evidence of biosafety issues was observed in systematic examinations of these nanotags. Our study unveils the potential of NIR-II SERS nanotags as appropriate SLN tracers, making significant advances toward the accurate positioning of lesions using the SERS-based tracer technique.


Assuntos
Linfonodo Sentinela , Análise Espectral Raman , Animais , Análise Espectral Raman/métodos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Coelhos , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Adv Sci (Weinh) ; 10(24): e2301721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340601

RESUMO

Non-invasive detection and precise localization of deep lesions have attracted significant attention for both fundamental and clinical studies. Optical modality techniques are promising with high sensitivity and molecular specificity, but are limited by shallow tissue penetration and the failure to accurately determine lesion depth. Here the authors report in vivo ratiometric surface-enhanced transmission Raman spectroscopy (SETRS) for non-invasive localization and perioperative surgery navigation of deep sentinel lymph nodes in live rats. The SETRS system uses ultrabright surface-enhanced Raman spectroscopy (SERS) nanoparticles with a low detection limit of 10 pM and a home-built photosafe transmission Raman spectroscopy setup. The ratiometric SETRS strategy is proposed based on the ratio of multiple Raman spectral peaks for obtaining lesion depth. Via this strategy, the depth of the phantom lesions in ex vivo rat tissues is precisely determined with a mean-absolute-percentage-error of 11.8%, and the accurate localization of a 6-mm-deep rat popliteal lymph node is achieved. The feasibility of ratiometric SETRS allows the successful perioperative navigation of in vivo lymph node biopsy surgery in live rats under clinically safe laser irradiance. This study represents a significant step toward the clinical translation of TRS techniques, providing new insights for the design and implementation of in vivo SERS applications.


Assuntos
Nanopartículas , Linfonodo Sentinela , Ratos , Animais , Análise Espectral Raman/métodos , Nanopartículas/química , Imagens de Fantasmas , Lasers
3.
Biomaterials ; 300: 122211, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379685

RESUMO

Second near-infrared window (NIR-II, 1000-1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m-1 cm-1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.


Assuntos
Corantes , Níquel , Animais , Camundongos , Imagem Óptica , Linfonodos , Enxofre
4.
J Pharm Biomed Anal ; 223: 115160, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36410132

RESUMO

Surface-enhanced Raman spectroscopy (SERS) for quantitative analysis is challenging owing to the unstable enhanced effect. However, it can be improved by combining it with chemometrics. In this study, we established a quantitative analysis method for phenytoin sodium (PS) based on partial least-squares (PLS) and linear regression (LR) models combined with SERS. Gold nanoparticles (AuNPs) were optimally enhanced substrates for PS. 180 PS samples in the concentration range of 0.98 - 980 µg mL-1 were used to establish a quantitative prediction model by PLS regression, and an accurate and robust prediction was achieved. Furthermore, we found that SERS peak intensity showed a good linear correlation with the concentration of PS in the concentration range of 1 - 80 µg mL -1. After using P-mercaptobenzoic acid as an internal standard, the accuracy and precision of the LR model were significantly improved compared with that of the model without an internal standard. In general, PLS chemometrics and LR model with internal standard which were combined with SERS in this paper provide new possible analytical methods for analytes to develop a rapid and sensitive quantitative analysis method.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Análise dos Mínimos Quadrados , Modelos Lineares , Fenitoína , Ouro
5.
ACS Appl Mater Interfaces ; 14(7): 8876-8887, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157434

RESUMO

Surface-enhanced Raman scattering (SERS) nanoprobes have attracted particular interests in the field of bioimaging owing to their high sensitivity and specificity of the fingerprint spectrum. However, the limited signal-to-background ratio (SBR) in SERS imaging and the requirement to perform imaging in a dark environment have largely hindered its biomedical application. To circumvent this, we have developed a type of bio-orthogonal nanoprobes for SERS imaging with an ultrahigh SBR and ambient light anti-interference ability. The core-shell nanoprobes exhibit strongly enhanced Raman signals and depress the background from photoluminescence of metallic nanoparticles by off-resonance excitation and from the Raman scattering and auto-fluorescence of tissues by near-infrared laser excitation. Such nanoprobes have achieved an SBR of over 100 in SERS bioimaging, 5 times higher than the traditional on-resonant nanoprobes, and their bio-orthogonal signal in the Raman-silent region renders the anti-interference capability under ambient light. The development of these SERS probes opens up a new era for the future applications of Raman imaging in clinical medicine.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Ouro , Análise Espectral Raman/métodos
6.
Adv Sci (Weinh) ; 9(2): e2102405, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741446

RESUMO

The accurate positioning of sentinel lymph node (SLN) by tracers during surgery is an important prerequisite for SLN biopsy. A major problem of traditional tracers in SLN biopsy is the short surgery window due to the fast diffusion of tracers through the lymphatics, resulting in a misjudgment between SLN and second echelon lymph node (2nd LN). Here, a nontoxic Raman nanoparticle tracer, termed gap-enhanced Raman tags (GERTs), for the accurate intraoperative positioning of SLNs with a sufficient surgical time window is designed. In white New Zealand rabbit models, GERTs enable precise identification of SLNs within 10 min, as well as provide the surgeon with a more than 4 h time window to differentiate SLN and 2nd LN. In addition, the ultrahigh sensitivity of GERTs (detection limit is 0.5 × 10-12 m) allows detection of labeled SLNs before surgery, thereby providing preoperative positioning information for minimally invasive surgery. Comprehensive biosafety evaluations carried out in the context of the Food and Drug Administration and International Standard Organization demonstrate no significant toxicity of GERTs, which supports a promising clinical translation opportunity of GERTs for precise SLN identification in breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Monitorização Intraoperatória/métodos , Biópsia de Linfonodo Sentinela/métodos , Linfonodo Sentinela/diagnóstico por imagem , Análise Espectral Raman/métodos , Animais , Modelos Animais de Doenças , Feminino , Nanopartículas , Coelhos
7.
Biomaterials ; 276: 121070, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418817

RESUMO

Sentinel lymph node (SLN) imaging and biopsy has been advocated as an important technique to evaluate the metastatic status of regional lymph nodes and determine subsequent surgical procedure for many cancers, yet there is no reliable means to provide accurate and rapid diagnosis of metastatic SLN during surgery. Here we develop a new approach, named "Ratiometric Raman dual-nanotag strategy", that using folic acid functionalized targeted and nontargeted gap-enhanced Raman tags (FA-GERTs and Nt-GERTs) to detect metastatic SLN based on Raman imaging combined with classical least square data processing methods. By using this strategy, with built-in self-calibration for signal correction, rather than absolute intensity-dependent signal readout, we realize the visualization and prompt intraoperative diagnosis of metastatic SLN with a high accuracy of 87.5 % when the cut-off value of ratio (FA-GERTs/Nt-GERTs) set at 1.255. This approach may outperform the existing histopathological assessment in diagnosing SLN metastasis and is promising for guiding surgical procedure in the future.


Assuntos
Linfonodo Sentinela , Diagnóstico por Imagem , Humanos , Linfonodos , Metástase Linfática , Biópsia de Linfonodo Sentinela
9.
J Clin Lab Anal ; 33(5): e22868, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30803031

RESUMO

BACKGROUND: Hyperuricemia is the only biochemical index in the classification of acute gouty arthritis in American Rheumatism Association 1977 and the main basis of clinical diagnosis for most doctors. However, nearly half of the time gout occurs without hyperuricemia, especially in an acute attack,which leads to an urgent need to find a new substitute diadynamic criteria of gout. Xanthine and hypoxanthine, as precursors of uric acid, have been reported to be high in gout patients with hyperuricemia and presumed to be gout biomarkers. OBJECTIVES: To further explore the possibility of xanthine and hypoxanthine to be gout biomarkers as substitutes for uric acid. METHODS: A reversed-phase HPLC-UV method was employed for simultaneous quantitative detection of uric acid (UA), xanthine (X), and hypoxanthine (HX) in gout patients' (with and without hyperuricemia) and healthy persons' serum. RESULTS: The xanthine and hypoxanthine concentrations in gout patients with hyperuricemia and without hyperuricemia are higher than in healthy persons with a P < 0.001. CONCLUSIONS: This study supplements previous researches by confirming that xanthine and hypoxanthine are significantly elevated in gout patients' serum especially in patients' with normouricemia, which supported xanthine and hypoxanthine may have clinical application for the diagnosis of gout.


Assuntos
Gota/diagnóstico , Hipoxantina/sangue , Xantina/sangue , Análise Química do Sangue/normas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Gota/sangue , Gota/etiologia , Humanos , Hiperuricemia/sangue , Limite de Detecção , Masculino , Reprodutibilidade dos Testes , Ácido Úrico/sangue
10.
Colloids Surf B Biointerfaces ; 173: 286-294, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308453

RESUMO

Acyclovir (ACV) is a synthetic antiviral agent with serious side effect, particularly its nephrotoxicity, so this study was to explore the ultrasensitive detection of ACV by surface-enhanced Raman scattering (SERS). The enhancement capability of nanoparticles prepared by different chemical reduction were compared, and Ag nanoparticles reduced by citrate are the most propriate enhanced substrate for acyclovir. In addition, comparison between prominent SERS-enhanced bands and the precise mode descriptions predicted through density functional theory (DFT) simulations is used to understand the mechanisms between ACV and metallic surface. 130 different levels of ACV concentrations in a range from 10-1∼10-7 were used to build quantitative prediction models by two different modeling methods, partial least-squares (PLS) regression and artificial neural network (ANN). Under the optimal conditions, the performance of the PLS model was much better than ANN. The results demonstrated that SERS imaging with multivariate analysis holds great potential for the sensitive and cost effective clinic test of ACV and its metabolites in biological fluids.


Assuntos
Aciclovir/análise , Antivirais/análise , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Ácido Cítrico/química , Computadores de Mão , Humanos , Análise dos Mínimos Quadrados , Análise Multivariada , Redes Neurais de Computação , Oxirredução , Teoria Quântica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA